Similar Triangles

The same but not quite....
Triangle similarity and triangle congruence are almost the same thing. That's a big "almost" though. Congruent triangles have the same size and shape, and similar triangles have the same shape but DIFFERENT sizes.

Triangle similarity also has "DNA tests" (Just like congruence had SSS, SAS, ASA, etc.) to tell whether or not they are in fact similar. They are AAA, AA, SAS, and SSS. We will of course go over these now and explain the difference between them and their congruency counterparts.
SSS is first. It means that if all three sides of two triangles have the same RATIO then the triangles are similar. Let's see...

$$
\begin{aligned}
& \frac{\mathrm{DF}}{\mathrm{AC}}=\frac{2}{4}=\frac{1}{2} \text { So } \ldots \frac{\mathrm{DF}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{EF}}{\mathrm{BC}} \\
& \frac{\mathrm{DE}}{\mathrm{AB}}=\frac{3}{6}=\frac{1}{2} \\
& \frac{\mathrm{EF}}{\mathrm{BC}}=\frac{4}{8}=\frac{1}{2} \quad \text { So } \ldots \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \text { by } \\
& \text { SSS }
\end{aligned}
$$

By the way, "~" means "similiar" or "is similar to."
SAS is next. It means that if two sides of two triangles have the same RATIO and the angle between the sides are CONGRUENT, then the triangles are similar. Let's see...

$$
\begin{array}{ll}
\frac{\mathrm{DF}}{\mathrm{AC}}=\frac{2}{6}=\frac{1}{3} & \text { So... } \frac{\mathrm{DF}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{AB}} \\
\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3} & \begin{array}{l}
\text { and... } \angle \mathrm{A} \cong \angle \mathrm{D} \\
\text { So... } \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \text { by SAS }
\end{array}
\end{array}
$$

I can't stress enough that the angles that are congruent must be BETWEEN the sides that have equal ratios. If not, you get ASS and its backward evil twin SSA, and they don't work for similarity either!
AAA and AA go together. If all three angles of one triangle are congruent to all three angles of another then the triangles are similar. But what about AA? Well, if you have two angles inside a triangle can you not solve for the third because their sum is 180° ? Of course you can! So having 2 angles is the same as having three angles for similarity. I like to always use AA but sometimes you will see people use AAA. It's unnecessary, but I thought I would warn you. Let's see this one...

$\angle \mathrm{C} \cong \angle \mathrm{F}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by AAA
$\angle A \cong \angle D \quad$ or...
$\angle \mathrm{B} \cong \angle \mathrm{E} \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by AA

$\angle \mathrm{ABC} \cong \angle \mathrm{ADE}$ Corresponding Angles
$\angle A C B \cong \angle A E D$ Corresponding Angles
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ by AA
To the similarity mobile! Let's practice...

Decide if each pair of triangles is similar. List the parts, and bubble A for SSS, B for SAS, C for AA (AAA), and D for "not similar."

4.

6.

[^0]164
Bubble the correct answer choice from each item above.

$\# 1$.	
OA.	
○B.	
	○C.
	OD.

$\# 2$.
$\bigcirc A$.
$\bigcirc B$.
$\bigcirc C$.
$\bigcirc D$.

[^1]$\# 4$.
○A.
○B.
○C.
○D.

$\# 5$.
$\bigcirc \mathrm{A}$
$\bigcirc \mathrm{B}$
○
○

F5.
A.
B.
C.
D.
\#6.
\bigcirc ○.
○B.
○c.
OD.

Bubble the correct answer choice from each item above.
$\bigcirc A$
○B
○с
OD.
\bigcirc ○.
B.
○c.
OD.
$\bigcirc \mathrm{A}$.
○B.
○c.
OD.
$\bigcirc A$.
○.
○с.
○D.
\bigcirc А.
\bigcirc В
○.
OD.
OA.
○B.
○.
OD.
© 2010 www.letspracticegeometry.com

14.

15.

17.

16.

18.

Bubble the correct answer choice from each item above.

OA.	OA.	OA.	OA.	OA.	OA.
OB.	OB.	OB.	OB.	OB.	OB.
OC.	OC.	OB.	OC.	OC.	OB.
OD.	OD.	OD.	OC.	OC.	
OD.	OD.	OD.	OD.	OD.	

19.
20.

23.

22.

24. $\Delta \mathrm{GHI}$ and $\Delta \mathrm{JKL}$ are both equilateral.

Bubble the correct answer choice from each item above.

$\# 19$.	$\# 20$.	$\# 21$.	$\# 22$.	$\# 23$.	\#24.
OA.	OA.	O2.	OA.	OA.	OA.
OB.	OB.	OA.	OA.	OA.	OA.
OC.	OB.	OB.	OB.	OB.	OB.
OD.	OC.	OC.	OC.	OC.	OC.
OD.	OD.	OD.	OD.	OD.	

[^2]Choose the best choice.
25. $\frac{\mathrm{AB}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$ What additional information is necessary to show $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by SSS ?

A. $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
B. $\frac{\mathrm{AC}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
C. $\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AC}}{\mathrm{EF}}$
D. $\frac{C B}{A B}=\frac{E F}{D F}$
27. $\angle \mathrm{M} \cong \angle \mathrm{P}$. What additional information is necessary to show that $\triangle \mathrm{MNO} \sim \triangle \mathrm{PQR}$ by AA ?

A. $\angle \mathrm{M} \cong \angle 0$
B. $\angle \mathrm{P} \cong \angle \mathrm{R}$
C. $\angle \mathrm{N} \cong \angle P$
D. $\angle \mathrm{N} \cong \angle \mathrm{Q}$
29. $\angle \mathrm{C} \cong \angle \mathrm{F}$. What additional information is necessary to show $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by AA ?

A. $\angle \mathrm{C} \cong \angle \mathrm{B}$
B. $\angle \mathrm{E} \cong \angle \mathrm{F}$
C. $\angle A \cong \angle D$
D. $\angle \mathrm{E} \cong \angle \mathrm{C}$
26. $\frac{\mathrm{GI}}{\mathrm{JL}}=\frac{\mathrm{IH}}{\mathrm{LK}}$ What additional information is necessary to show $\Delta \mathrm{GHI} \sim \Delta \mathrm{JKL}$ by SAS?

A. $\angle \mathrm{G} \cong \angle \mathrm{J}$
B. $\angle \mathrm{H} \cong \angle \mathrm{K}$
C. $\angle \mathrm{I} \cong \angle \mathrm{L}$
D. $\angle \mathrm{G} \cong \angle \mathrm{H}$
28. $\frac{\mathrm{SU}}{\mathrm{VX}}=\frac{\mathrm{UT}}{\mathrm{VW}}$ What additional information is necessary to show $\Delta \mathrm{STU} \sim \Delta \mathrm{VWX}$ by SSS ?

A. $\frac{\mathrm{ST}}{\mathrm{VW}}=\frac{\mathrm{SU}}{\mathrm{VX}}$
B. $\frac{S T}{V W}=\frac{S U}{S T}$
C. $\frac{S U}{S T}=\frac{S T}{S U}$
D. $\frac{\mathrm{VW}}{\mathrm{XV}}=\frac{\mathrm{VX}}{\mathrm{XV}}$
30. What additional information is necessary to show $\Delta \mathrm{GHI} \sim \Delta \mathrm{GJK}$ by AA ?

Bubble the correct answer choice from each item above.

$\# 25$.
○A.
○B.
○C.
○D.

© 2010 www.letspracticegeometry.com
31. What additional information is necessary to show $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ by AA ?

33. $\mathrm{OM} \| \mathrm{NP}$. What additional information is necessary to show $\triangle \mathrm{MNO} \sim \triangle \mathrm{PQN}$ by SAS?

A. $\frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{\mathrm{NO}}{\mathrm{QN}}$
B. $\frac{\mathrm{OM}}{\mathrm{MN}}=\frac{\mathrm{NP}}{\mathrm{NQ}}$
C. $\frac{\mathrm{OM}}{\mathrm{NP}}=\frac{\mathrm{MN}}{\mathrm{PQ}}$
D. $\frac{\mathrm{OM}}{\mathrm{NP}}=\frac{\mathrm{ON}}{\mathrm{NQ}}$
35. $\mathrm{AB} \| \mathrm{DE}$. What additional information is necessary to show $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by SAS?

A. $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EB}}$
$\frac{B C}{E B}=\frac{A C}{D B}$
B. $\frac{\mathrm{AC}}{\mathrm{DB}}=\frac{\mathrm{AB}}{\mathrm{DE}}$
$\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{BD}}{\mathrm{DE}}$
32. What additional information is necessary to show $\Delta \mathrm{GHK} \sim \Delta \mathrm{IHJ}$ by AA?

A. $\angle \mathrm{G} \cong \angle \mathrm{IHJ}$
B. $\angle \mathrm{K} \cong \angle \mathrm{G}$
C. $\overline{\mathrm{GK}} \| \overline{\mathrm{IK}}$
D. $\overline{\mathrm{GK}} \| \overline{\mathrm{I}}$
34. $\frac{\mathrm{ST}}{\mathrm{VW}}=\frac{\mathrm{TU}}{\mathrm{WX}}$ What additional information is necessary to show $\Delta \mathrm{STU} \sim \Delta \mathrm{VWX}$ by SAS ?

A. $\angle \mathrm{W} \cong \angle \mathrm{V}$
B. $\angle \mathrm{T} \cong \angle \mathrm{W}$
C. $\angle \mathrm{V} \cong \angle \mathrm{S}$
D. $\angle U \cong \angle X$
36. What additional information is necessary to show $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ by AA ?

B. $\angle \mathrm{K} \cong \angle \mathrm{IJH}$
C. $\overline{\mathrm{GK}} \| \overline{\mathrm{GJ}}$
D. $\overline{\mathrm{GH}} \| \overline{\mathrm{J}}$

Bubble the correct answer choice from each item above.

\#31.	\#32.	\#33.	\#34.	\#35.	\#36.
OA.	OA.	OA.	OA.	OA.	OA.
OB.	OB.	OB.	OB.	OB.	OB.
OC.	OB.	OB.	OB.	OC.	OC.
OD.	OD.	OC.	OC.		
OD.	OD.	OD.	OD.	OD.	OD.

[^0]: 2.
[^1]: $\# 3$.
 $\bigcirc \mathrm{O}$.
 $\bigcirc \mathrm{B}$.
 $\bigcirc \mathrm{C}$.
 $\bigcirc \mathrm{D}$.

[^2]: © 2010 www.letspracticegeometry.com

